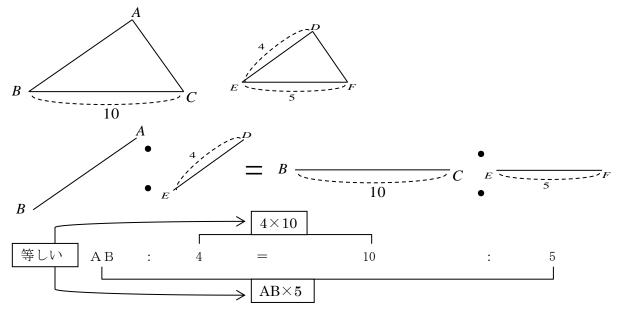
数学 I (後)

学習書

教科書 2 東書 数 I 704 1 0 4 ページ~

教科書 p104 三角形

例1の解説



よって、 $5 \times AB = 4 \times 10 = 40$ これを解いて AB = 8=40 ですから)

 (5×8)

教科書 p105 三平方の定理

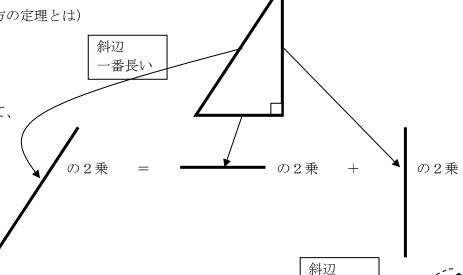
例2の解説(三平方の定理とは)

直角三角形の

斜辺

لح

残りの2辺について、

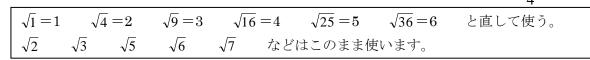


一番長い

次のような図の場合、

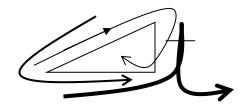
xの2乗 = 4の2乗 + 3の2乗

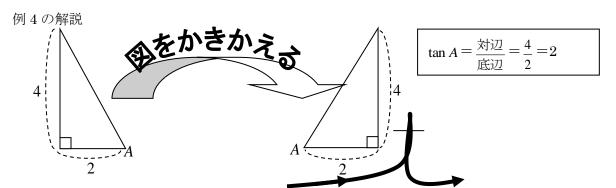
 $x^2 = 4^2 + 3^2 = 16 + 9 = 25$



教科書 p107 タンジェント

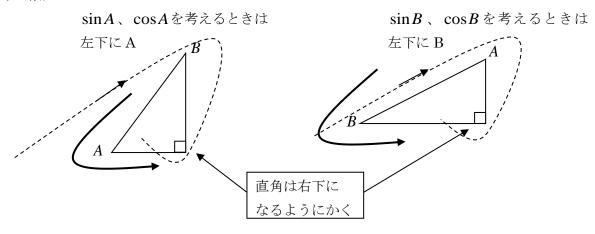
有名な覚え方





教科書 p109 サインとコサイン

例 5 解説



例6について

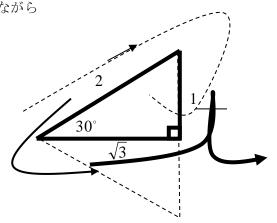
例えば次の図は覚える!! そして、これを見ながら

$$\sin 30^\circ = 2 \, \text{Ard} \, 1 = \frac{1}{2}$$

$$\cos 30^\circ = 2 \, \text{Ard} \, \sqrt{3} = \frac{\sqrt{3}}{2}$$

$$\tan 30^\circ = \sqrt{3} \, \text{Ard} \, 1 = \frac{1}{\sqrt{3}}$$

を書けるようにするんです。



教科書 p111 三角比の利用

例7解説

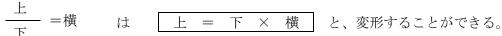
 $\frac{BC}{10} = \tan 33^{\circ}$ で、 $\tan 33^{\circ}$ の値は教科書巻末の表に載っていますから、

あとは、式の変形だけです。

式変形の仕方

例えば、 $\frac{80}{40}$ = 2ですね。これより、80 = 40×2

一般に、



巻末の表で調べると、

 $\tan 33^{\circ} = 0.6494$

ちょっと練習してみましょう!

$$\frac{12}{3} = 4$$
 ⇒変形⇒ $12 = 3 \times 4$ $\frac{28}{4} = 7$ ⇒変形⇒ $28 = 4 \times 7$

$$\frac{28}{4} = 7$$
 ⇒変形⇒ $28 = 4 \times 7$

だから、
$$\frac{BC}{10} = \tan 33^\circ$$
 ⇒変形⇒ $BC = 10 \times \tan 33^\circ$

 $=10\times0.6494$

=6.494

四捨五入して小数第1位までとは、 =6.494 ≒6.5 (m)

小数第2位を四捨五入するということ

例えば、四捨五入して小数第1位まで求めると、

12.3456 第2位を四捨五入 → 12.3

123.456 第2位を四捨五入 → 123.5

教科書 p112

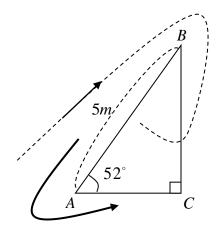
例8解説

$$\frac{BC}{5} = \sin 52^{\circ}$$
 ⇒変形⇒ $BC = 5 \times \sin 52^{\circ}$ 一般に、 $\frac{\bot}{\Gamma}$ =横 は

変形することができる。

$$BC = 5 \times \sin 52^{\circ}$$

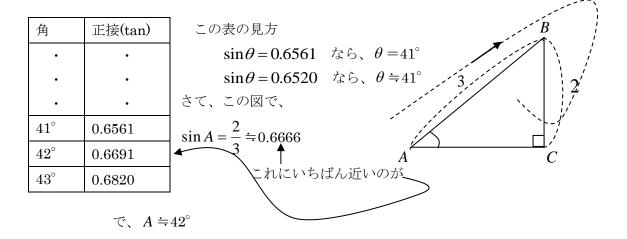
= $5 \times 0.7880 = 3.9400$ ←電卓で計算
= 3.94 **〇〇** $\Rightarrow 3.9 \text{ (m)}$



四捨五入して小数第1位までとは、 小数第2位を四捨五入するということ

$$\frac{AC}{5} = \cos 52^{\circ}$$
 ⇒変形⇒ $AC = 5 \times \cos 52^{\circ}$ $= 5 \times 0.6157 = 3.0785$ ←電卓で計算 $1 = 3.0785 \rightleftharpoons 3.1$ (m)

例9解説



教科書 p113

問 14 類題解説

间 14 9	リ		20 5 11 - 21 42 2
角	正接(tan)	この表の見方	ピッタリではない
•	•	$ an heta$ = 0.7265 なら、 $ heta$ = 36°	が、近い値のとき使
•	•	$\tan \theta = 0.7521$ なら、 $\theta = 37^{\circ}$	う記号 ≒
•	•	さて、この図で、	
36°	0.7265	tan A = 197 = 0.7577 ←電卓で計算	B
37°	0.7536	260 ♠	\uparrow
38°	0.7813	これにいちばん近いのが	1107
†	で、A ≒	A	197cm C 60cm

教科書 p115 90° -Aの三角比例題 3 の解説

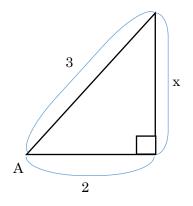
 $\cos A = \frac{2}{3}$ を図で表してみます。 >

三平方の定理から、 $3^2=x^2+2^2$

よって、 $x^2=9-4=5$

 $x > 0 \downarrow 0$, $x = \sqrt{5}$

 $= \frac{x}{3} = \frac{\sqrt{5}}{3}$ $\tan A = \frac{x}{2} = \frac{\sqrt{5}}{2}$

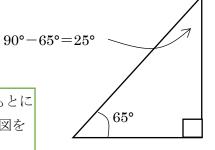


教科書 p116

例 10 の解説

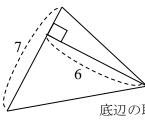
(1) $\sin 65$ ° を図で表してみます。 $$^\circ$$ これより、 $\sin 65$ ° $= \cos 25$ ° であることが分かる。

公式: $\sin(90^{\circ}-\theta)=\cos\theta$ は、この事実をもとに作られています。公式を覚えるより、この図をかけるようにしておきたいです。



教科書 p117 三角形の面積

三角形の面積について復習しておきましょう。



三角形において、

底辺×高さ÷
$$2 = \frac{$$
底辺×高さ $}{2} = \frac{1}{2} \times$ 底辺×高さ

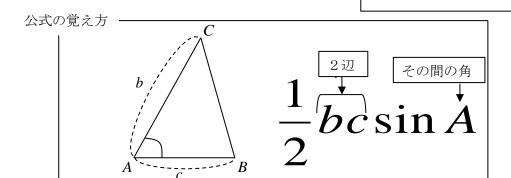
この式の答を、三角形の面積といいます。

底辺の取り方は3通りありますが、この図の場合、

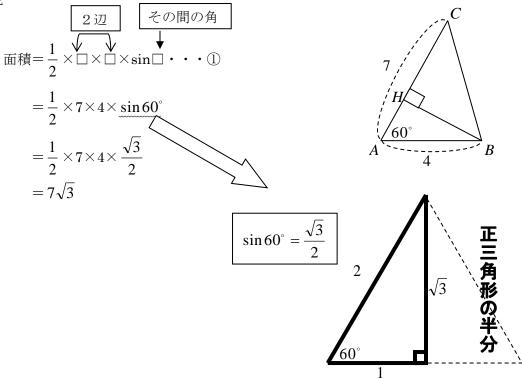
底辺=7とすれば、高さ=6、ですから、

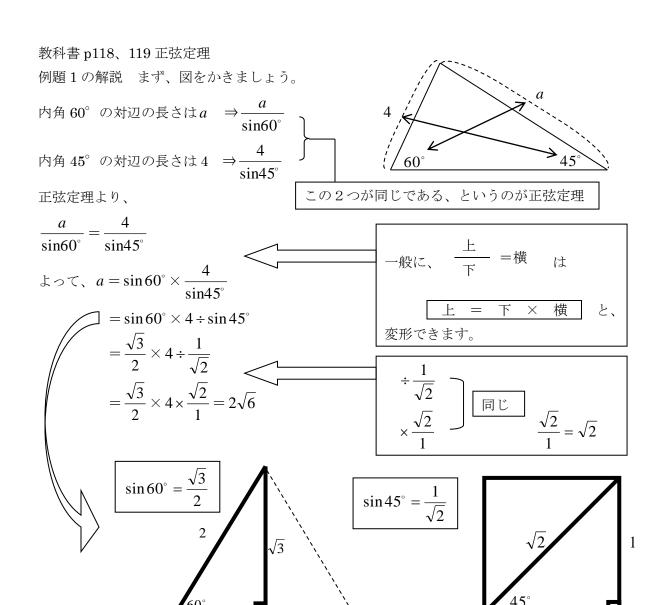
面積=
$$\frac{1}{2} \times 7 \times 6 = \frac{1 \times 7 \times 6}{2} = 2$$
1です。

三角形の面積の公式: $\frac{1}{2}bc\sin A$ は、この考え方をもとに作られます。



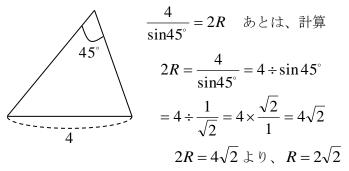
例1の解説

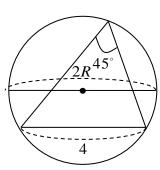




「外接円との関係」の解説

内角 45° の対辺の長さは $4 \rightarrow \frac{4}{\sin 45^\circ}$ この値が、外接円の直径と等しいことが分かっている。



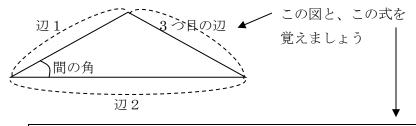


教科書 p120、121 余弦定理

余弦定理が成り立つ理由は、教科書で確認して下さい!ここではその意味について説明します。

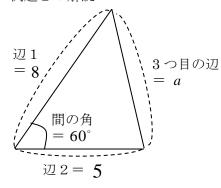
2 辺とその間の角が分る → 3つ目の辺の長さが分る

公式の覚え方



|(3 つ目の辺)²=(辺 1)²+(辺 2)²- 2 ×(辺 1)×(辺 2)× cos (間の角)|

例題2の解説



$$a^{2} = 8^{2} + 5^{2} - 2 \times 8 \times 5 \times \cos 60^{\circ}$$

$$= 64 + 25 - 80 \times \cos 60^{\circ}$$

$$= 89 - 80 \times \frac{1}{2}$$

$$= 89 - 40 = 49$$

$$a > 0 \text{ & } \emptyset, \quad a = \sqrt{49} = 7$$

$$120^{\circ}$$

150°

例2の解説

3辺から、内角のコサインが求められる!

(3 つ目の辺)2=(辺 1)2+(辺 2)2− 2×(辺 1)×(辺 2)× cos (間の角)

この式を変形すると、

 $2 \times (\overline{U} 1) \times (\overline{U} 2) \times \cos (\mathbb{H} \Omega \beta) = (\overline{U} 1)^2 + (\overline{U} 2)^2 - (3 つ \overline{U} \Omega)^2$

よって、
$$\cos (間の角) = \frac{(辺 1)^2 + (辺 2)^2 - (3つ目の辺)^2}{2 \times (辺 1) \times (辺 2)}$$

これを公式として覚える必要はなく、

(3 つ目の辺)2=(辺 1)2+(辺 2)2-2×(辺 1)×(辺 2)× cos (間の角)

これさえ、覚えてあれば、あとはただの式変形

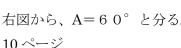
例 3 の場合、 $7^2 = 3^2 + 8^2 - 2 \times 3 \times 8 \times \cos A$

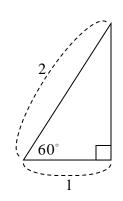
これを変形して、 $2\times3\times8\times\cos A = 3^2 + 8^2 - 7^2$

よって、 $48 \times \cos A = 9 + 6 \ 4 - 4 \ 9$

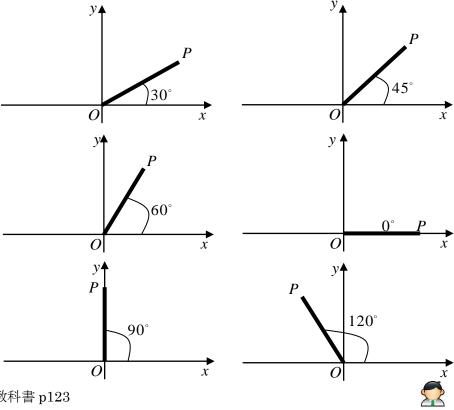
$$48 \times \cos A = 24$$
 $\cos A = \frac{24}{48} = \frac{1}{2}$

右図から、A=60°と分る。





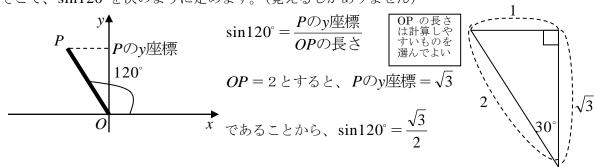
教科書 p122 座標と三角比の関係 先ず、角の表し方を覚えましょう

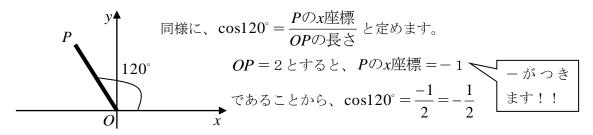


教科書 p123

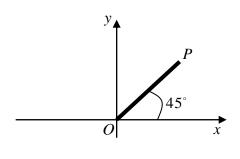
例3の解説

そこで、sin120°を次のように定めます。(覚えるしかありません)





また、
$$\tan 120^\circ = \frac{P\mathcal{O}y$$
座標 $= \frac{\sqrt{3}}{-1} = -\frac{\sqrt{3}}{1} = -\sqrt{3}$

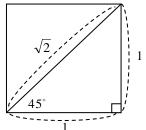


45° の場合、 $OP = \sqrt{2}$ とすると、後の計算が楽になります。

この場合、Pのx座標 = 1

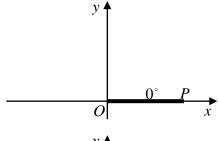
$$P$$
のy座標 = 1

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}}, \sin 45^{\circ} = \frac{1}{\sqrt{2}}$$



ここで、気が付いてほしいことがあります!!

 0° より大きく 90° より小さい角については、直角三角形のときと同じ値になる。

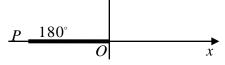


0°の場合、OPの長さに関わらず、

$$\cos 0^\circ = \frac{OP}{OP} = 1 , \sin 0^\circ = \frac{0}{OP} = 0$$

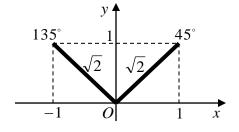
180°の場合も、OPの長さに関わらず、

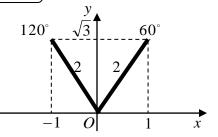
$$\cos 180^{\circ} = \frac{-OP}{OP} = -1$$
, $\sin 180^{\circ} = \frac{0}{OP} = 0$

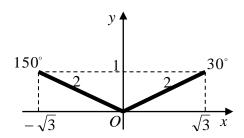


OPの長さの取り方

次のようにとると、計算が楽です。







教科書 p124 三角比の相互関係

例題3の解説

ここでのポイント

いつでも、 $\sin^2\theta + \cos^2\theta = 1$ つまり、 $(\sin\theta)^2 + (\cos\theta)^2 = 1$ が成り立つ。だから、

 $\sin\theta = \frac{4}{5}$ ということが分っていたら、上の式を利用して、 $(\cos\theta)^2$ の値を計算することができ

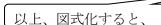
る。この場合、 $(\cos\theta)^2 = \frac{9}{25}$ と計算することができる。

さて、次に $(\cos\theta)^2 = \frac{9}{25}$ から $\cos\theta$ を計算するときはちょっと注意が必要で、

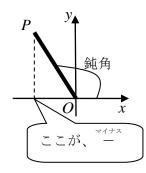
$$\theta$$
 が鋭角($0^\circ<\theta<90^\circ$) のとき、 $\cos\theta=+\sqrt{\frac{9}{25}}=\frac{3}{5}$

$$\theta$$
 が鈍角($90^\circ < \theta < 180^\circ$) のとき、 $\cos\theta = -\sqrt{\frac{9}{25}} = -\frac{3}{5}$ \cos 鈍角 < 0

さらに、 $\tan \theta = \sin \theta \div \cos \theta$ ですから、 $\sin \theta$ と $\cos \theta$ の値が分れば、 $\tan \theta$ の値も計算できることになります。



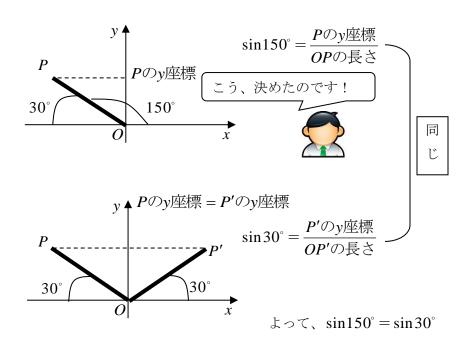
$$\sin \theta = \frac{4}{5}$$
 $\geq \left[\sin^2 \theta + \cos^2 \theta = 1 \right] \rightarrow \left(\cos \theta \right)^2 = \frac{9}{25}$

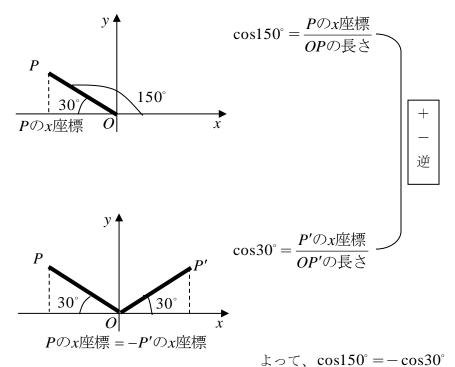


$$\theta$$
 が鈍角 θ が鋭角 \downarrow \downarrow $\cos\theta = -\frac{3}{5}$ $\cos\theta = \frac{3}{5}$

 $tan \theta = sin \theta \div cos \theta$ $tan \theta$ の値が計算できる。

教科書 p125 $180^{\circ} - \theta$ の三角比例 5 の解説





公式を覚えるのではなく、このように図を描いて考えましょう。

教科書 p133 度数分布表とヒストグラム

○データ処理の第一歩

まず、大まかに整理しましょう

A 班

3	10	7	14	5	9	15	0	9	18
0	8	11	10	15	19	6	23	13	5

このような場合、まず、大まかに整理

階級	度数
0以上4未満	3
4~8	4
8~12	6
12~16	4
16~20	2
20~	1

0	0
3	
5	5
6	
7	
8	
9	9
10	10
11	
13	
14	
15	15
18	
19	
23	
•	

○階級値の出し方

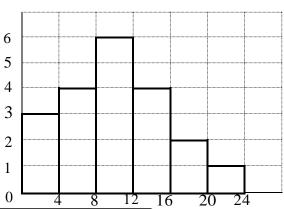
階級	階級値
0以上4未満	$\frac{0+4}{2}=2$
4~8	$\frac{4+8}{2} = 6$

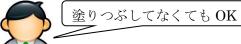
階級	階級値
0以上5未満	$\frac{0+5}{2} = 2.5$
5~10	$\frac{5+10}{2} = 7.5$
• • •	

教科書 p134

○ヒストグラムのかき方

階級	度数
0以上4未満	3
4~8	4
8~12	6
12~16	4
16~20	2
20~	1





教科書 p135

○相対度数分布表

階級	度数	相対度数
0以上4未満	3	$\frac{3}{20} = 0.15$
4~8	4	$\frac{2}{20} = 0.20$
8~12	6	
12~16	4	
16~20	2	
20~	1	
計	2 0	1.00

差が1となる度数の、相対度数が 異なる値になるように、 小数点以下の桁数を決める。

ここが 1.00 になるように

教科書 p136 代表值

○平均値

教科書に書いてある通りです。

○中央値

例(奇数個) データを小さい順に並べたものが、次のような場合

0 0 3 5 5 6 7 8 9

↑この5 が中央値

例(偶数個) データを小さい順に並べたものが、次のような場合

0 0 3 5 5 6 7 8 9 10

↑中央の2つの平均 $\frac{5+6}{2}$ =5.5 が中央値 真ん中がない場合は、中央2つの平均

○最頻値

O . N				
階級	度数			
0以上4未満	3			
4~8	4			
8~12	6			
12~16	4			
16~20	2			
20~	1			

←度数の最大はこの6、

その階級値
$$\frac{8+12}{2}=10$$
が最頻値

教科書 p138 四分位数と箱ひげ図

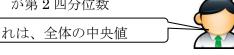
○四分位数は、まず第2四分位数から

例(奇数個) データを小さい順に並べたものが、次のような場合

0 0 3 5 5 6 7 8 9

↑この5 が第2四分位数

これは、全体の中央値



さらに、

これらの これらの

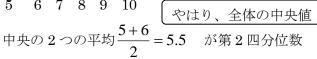
中央値が 中央値が

第1四分位数 第3四分位数

$$\frac{0+3}{2} = 1.5$$
 $\frac{7+8}{2} = 7.5$

例(偶数個) データを小さい順に並べたものが、次のような場合

0 0 3 5 5 6 7 8 9 10



さらに、

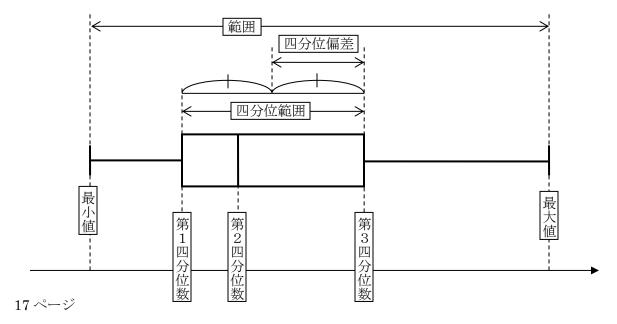
0 0 3 5 5 6 7 8 9 10

これらの これらの

中央値が中央値が

第1四分位数 第3四分位数

○箱ひげ図における、範囲・四分位範囲・四分位偏差 は図で覚えちゃいましょう!



教科書 p140 分散と標準偏差

○データ・平均・分散・標準偏差

分散の意義について

A君のテストの結果

国語	社会	数学	理科	英語
200	200	0	0	100

得点にばらつきがある。

B君のテストの結果

国語	社会	数学	理科	英語
100	100	100	100	100

Aの平均は、
$$\frac{200+200+0+0+100}{5}$$
 = 100 Bの平均は、 $\frac{100+100+100+100+100}{5}$ = 100

AもBも平均は同じだが、

Aの分散は、

$$\frac{(200-100)^2 + (200-100)^2 + (0-100)^2 + (0-100)^2 + (100-100)^2}{5}$$

$$= \frac{100^2 + 100^2 + (-100)^2 + (-100)^2 + 0^2}{6} = \frac{10000 + 10000 + 10000 + 10000 + 0}{5}$$

$$= \frac{40000}{5} = 8000$$

Bの分散は、

$$\frac{\left(100-100\right)^2 + \left(100-100\right)^2 + \left(100-100\right)^2 + \left(100-100\right)^2 + \left(100-100\right)^2}{5} = 0$$

Aは、Bよりばらつきが大きい。つまり、散らばり具合が大きい。

ばらつきの大きさは、分散の大きさで測れる。

教科書 p142 相関関係

教科書に詳しい説明があります。

補足

正の相関について、 $0\sim0.2$ ほとんど相関なし

0.2~0.4 弱い相関

0.4~0.7 比較的強い相関

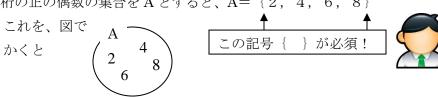
0.7~1 強い相関

と判定するのが一般的です。

教科書 p150 集合

例1 解説

- 1桁の正の偶数を書き上げると、2,4,6,8
- 1桁の正の偶数の集合をAとすると、 $A = \{2, 4, 6, 8\}$

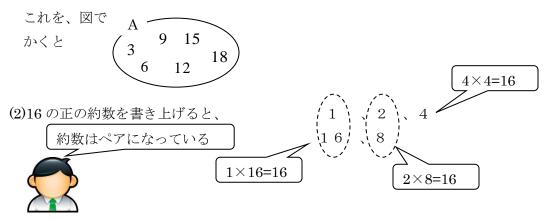


問1 解説

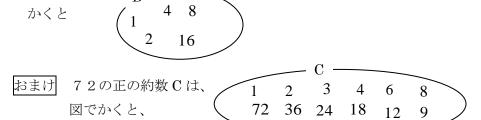
(1)1 以上 20 以下の 3 の倍数を書き上げると、

1以上20以下の3の倍数の集合Aは、

$$A = \{3, 6, 9, 12, 15, 18\}$$

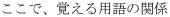


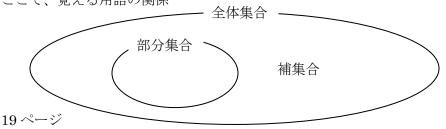
16 の正の約数の集合 B は、B= {1、2、4、8、16}



教科書 p151 部分集合

これを、図で





教科書 p152 共通部分、和集合、空集合 図のかきかた

 $A = \{1, [3], (5), 7, 9\}, B = \{[3], 4, (5), 6\}$

В 4 9

先に、共通部分を作図すると、

かきやすい。

部分集合についての注意事項

 $A = \{1, 2, 3, 4, 5\}$ とするとき、

 $A \subseteq A$ $Cap Table A \cap A$ Cap Table A Cap Tabl

また、集合A、B、C、・・・と空集合 ϕ について、

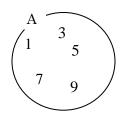
 $\phi \subseteq A, \phi \subseteq B, \phi \subseteq C, \cdot \cdot \cdot$

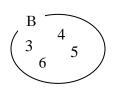
(空集合 ϕ とは、要素を1つも含まない集合 \rightarrow p153)

例3 補足解説

 $A = \{1, 3, 5, 7, 9\}, B = \{3, 4, 5, 6\}$ \$

それぞれ図で表すと、





ここで、3、5が共通であることに注目して、

右図のようにかく。

この図の全体が

AとBの和集合で、

 $A \cup B = \{1, 3, 4, 5, 6, 7, 9\}$

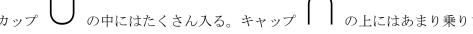
読み方は、AカップB

図の重なっている部分が

AとBの共通部分で、

 $A \cap B = \{3, 5\}$ 読み方は、A キャップ B

В



教科書 p154 命題と集合

「日本はいい国だ。」は命題ではない。・・・正しいかどうか判断がつかない。

「日本の人口は1億人を超えている。」は命題である。・・・正しいかどうか判断がつく。

真とは、完全に正しいこと ほんの少しでも間違いがあれば、偽 つまり、ほとんど正しくても、1つでも間違いがあれば、偽です。

例 4 補足解説

- (1)「三角形の内角の和は 170° である」は、命題であり、偽である。
- (2) $\lceil 2 \times (-3) = -6 \rceil$ は命題であり、真である。
- (3) $\lceil 3^2 + 4^2 = 7^2 \rceil$ は、命題であり、偽である。
- (4)「5は奇数である」は命題であり、真である。

問 5 類題 解説

$$(1)\sqrt{(-3)^2}=\sqrt{9}=3$$
 が、正しい命題。
これと似た正しい命題 \rightarrow $\sqrt{3^2}=\sqrt{9}=3$
9の平方根は、 ± 3 、など

(3) $\begin{bmatrix} 5^2 + 1 & 2^2 = 1 & 3^2 \end{bmatrix}$ は、命題ですが、 $\begin{bmatrix} 5^2 + 1 & 2^2 = \mathbf{x}^2 \end{bmatrix}$ は、命題とはいわず、条件といいます。

次のような書き方にも注意しよう!

条件「 $5^2+12^2=x^2$ 」をp、条件「x=13」をqとする。

このとき、条件pを満たすxは、13

条件qを満たすxは、13

おまけ 条件「 30° 、 100° 、 x° は三角形の3つの内角である」をrとする。

このとき、条件rを満たすxは、50

教科書 p155

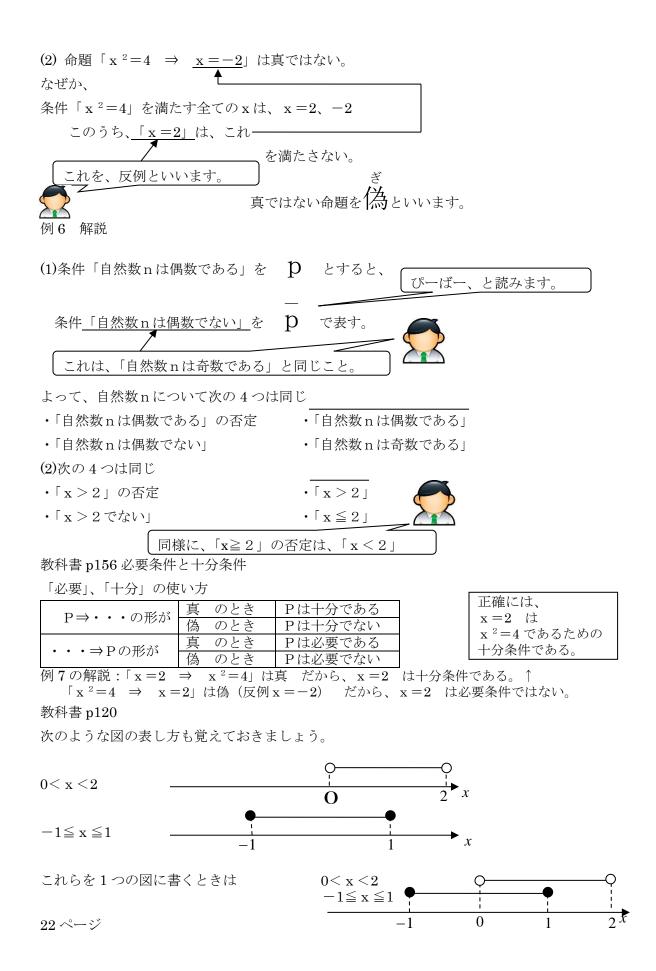
例 5 解説

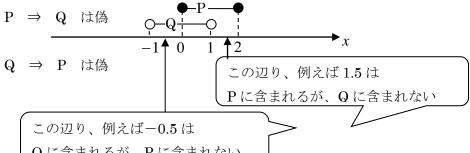
(1)命題「5x=-15 $\Rightarrow x=-3$ 」は其である。 とは、

条件[5x=-15]が成り立つようなx全てについて、

条件 「x=-3」が成り立つ

全て、と言ってもこの場合、1つしかない。





Qに含まれるが、Pに含まれない

2 つの命題「 $P \Rightarrow Q$ 」、「 $Q \Rightarrow P$ 」がともに偽の場合、 必要条件とも、十分条件とも言わない

教科書 p158

対偶の前に、否定の否定について、

例えば、「分らなくはない」=「分る」の否定の否定=「分る」

これを否定の記号を使って書くと、「分らなくはない」=「分る」=「分る」

これより一般に、条件pの否定は $\frac{1}{p}$ 、pの否定の否定は $\frac{1}{p}$ = p

例 10 解説

命題「x=2 \Rightarrow $x^2=4$ 」が真であることは、容易に示せます。 しかし、命題「 $x^2 \neq 4$ \Rightarrow $x \neq 2$ 」が真か偽か、となると難しい。 こんなときは、

さらに、 $\lceil x^2 \neq 4 \rceil = \lceil x^2 = 4 \rceil$ 、 $\lceil x \neq 2 \rceil = \lceil x = 2 \rceil$ なので、

$$\lceil x^2 \neq 4 \rfloor = \lceil x^2 = 4 \rfloor, \lceil x \neq 2 \rfloor = \lceil x = 2 \rfloor$$

命題「 $x^2 \neq 4$ ⇒ $x \neq 2$ | ◀

↓↑対偶

 $\int \mathbf{x} \neq 2 \quad \Rightarrow \quad \mathbf{x}^2 \neq 4$

↓ ↑ 書き換えて

 $\int x = 2$ \Rightarrow $x^2 = 4$ これが真なので

元の命題 -

も真です。

著作・発行・印刷 寺田 義剛 松阪高校通信制数学科

定価 priceless

初版 令和4年3月31日